& Pureload’

extreme performance testing

Pure HSS Simulator

Table of Content

Introduction

Installation
Prerequisites
Distribution
Diameter over SCTP
Start Script Modification

Configuration
Server

Loggin

Starting the Simulator

Provisioning
Provisioning of User Identities

More about Range definitions
Provisioning of Sh InitialFilterCriteria

Diameter Support
Sh
Zh
Zx
SWx
Diameter overload control

RADIUS Support
Authentication

Accounting

Web Services (REST) Interface

Read |dentity
Create New |dentity
Update Identity

Delete Identity
SWx Procedures

PureLoad Diameter Tasks

References

© PurelLoad Software 2017

Pure HSS Simulator 3.0
October 2017

& Pureload’

extreme performance testing

Introduction
This document describes the PureLoad HSS Simulator. The Simulator is designed to be used for
performance and stability tests, using a subset of the Sh, Zh and Zx Diameter interfaces.

The HSS Simulator is implemented in Java and provides a Diameter interface and a simple HTTP
based web services interface. All provisioned data (user identities) are handled in-memory and no
persistent storage is provided.

The following picture shows an overview of the implementation and provided interfaces:

HSS Simulator

Provisioning
= Ty
Diameter Interface RADIUS Interface HTTP Interface XML
/Z Wx RADIUS RADIUS
Aggregation :
BSF AFG Proxy HTTP Client

Configuration settings are controlled by an external XML file. Provisioning is also provided by a
set of XML-files that are read during startup. In addition, changes may be made using the REST
based web services interface.

& Pureload’

extreme performance testing

Installation

Prerequisites

To use the HSS Simulator, official Java 8 from Oracle is required. The latest Java 8 version is
recommended.

SCTP is supported on Linux only. See the section about SCTP below.

Distribution
The HSS Simulator is provided as a tar file that is extracted in an appropriate directory. The
content of the tar file:

e README.txt
General information.

e bin/
Scripts to start the simulator
e config/
Configuration files
e lib/
Used JAR files
e log/
Directory to store log files.
e doc/

Directory with documentation (this file)

Diameter over SCTP

SCTP is supported on Linux only and is based on the Linux kernel built-is support. In addition the
Linux user space library for SCTP (libsctp) is required. How to install libsctp depends on the Linux
distribution used:

e Ubuntu
sudo apt-get install Iksctp-tools
e SuSE

sudo zypper install Iksctp-tools

Start Script Modification
The script to start the HSS Simulator bin/hss-simulator.sh must be configured to define where
Java 8 is installed.

Change the following line:
JAVA HOME=/home/pureload/jrel.8
to where Java 8 is installed.

In addition the size of the Java Heap might need to be increased. If so change the line:
JAVA OPTS="-Xms64m -Xmx1024m $JAVA OPTS"

& PurelLoad

extreme performance testing

Configuration

Server
The server is configured by the XML file config/hss-server.xml. The file consist of 5 child
configuration elements:

<?xml version="1.0" encoding="UTF-8"?>
<hss-simulator>

<!-- Diameter server properties -->
<diameter>

</diameter>

<!-- Radius server properties -->
<radius>

</radius>

<!-- Provisioning -->
<provisioning>

</provisioning>

<!-- Statistics configuration -->
<statistics>

</statistics>

<!I-- HTTP server host/port -->
<http>

</http>

</hss-simulator>

e Diameter element
Defines the diameter interface
e Radius element
Defines the radius interface
e Provisioning element
Provisioning of User Identities
e Statistics element
Define if statistics should be logged
e Http element
Define the HTTP interface

& PurelLoad

extreme performance testing

Diameter

<!-- Diameter server properties -->
<diameter>
<!-- Hostname or IP address. Multiple comma separated hosts can be specified -->
<host>192.168.1.100</host>
<!-- Origin host names(s). Multiple comma separated names can be specified -->
<!-- (Used to set Origin-Host AVP to override value specified by host element) -->
<origin-host></origin-host>
<!-- Port -->
<port>3868</port>
<!-- Server realm -->
<realm>pureload.com</realm>
<!-- Default vendor id -->
<vendor-id>10415</vendor-id>
<product-name>PureLoad HSS Simulator</product-name>
<firmware>1</firmware>
<!-- Overload control (RFC 7683). Disabled by default -->
<overload>
<enabled>true</enabled>
<threshold-tps>10</threshold-tps>
<validity-duration»30</validity-duration>
<reduction-percentage>10</reduction-percentage>
</overload>
<!-- Request timeout for diameter requests sent (milliseconds)-->
<request-timeout>3000</request-timeout>
<!-- Simulated delay (milliseconds) -->
<delay>0</delay>
<!-- Protocol (TCP or SCTP) -->
<protocol>TCP</protocol>
<sctp>
</sctp>
</diameter>

Configuration of various properties controlling the Diameter server. Most are self explanatory, but
a few notes:
e host element
Host name(s) or IP address(es) for local peer(s). Multiple IP addresses or hostnames can
be specified, separated by comma. For SCTP this is the local primary addresses.
e port element
Port for the local peer.
e overload
Diameter overload configuration
e request-timeout
Used in cases where the HSS simulator send outgoing Diameter messages
e delay
Used to add a simulated delay before Diameter answer messages is sent
e protocol (TCP or SCTP), controls which transport protocol to use
If set to SCTP, the SCTP subsection can be used to configure SCTP specific settings.

& PurelLoad

extreme performance testing

Diameter SCTP
If Diameter protocol is set to SCTP, the sctp child element is used to configure details of the
SCTP implementation.

<!-- Diameter server properties -->
<diameter>

<!-- Protocol (TCP or SCTP) -->

<protocol>SCTP</protocol>

<sctp>
<!-- Associated hosts. 1'st host must the primary address, specified in

<host> element above -->

<associated-hosts>192.168.1.100, 192.168.0.101, 192.168.0.102</associated-hosts>
<I-- Time to live, @ for no timeout -->
<ttl>o</ttl>
<!-- Max number of inbound streams -->
<max-in>10</max-in>
<!I-- Max number of outbound streams -->
<max-out>4</max-out>

</sctp>

</diameter>

The associated-hosts element is used to specify the host name(s) or IP address(es) to bind to
(multi-homing). Hosts are be specified, separated by comma, where the first host must be one
specified in the diameter host element (the primary host).

Radius
The Radius interface is configured using the radius child element:

<!-- Radius server properties -->
<radius>
<!-- Hostname or IP address. Multiple comma separated hosts can be specified -->
<host>localhost</host>
<!-- Ports (-1 to disable) -->
<auth-port>1812</auth-port>
<acct-port>1813</acct-port>
<!-- RADIUS secret -->
<secret>pureload</secret>
<!-- Add Message-Authenticator AVP to response packets (true/false) -->
<add-message-authenticator>true</add-message-authenticator>
</radius>

Most are self explanatory, but a few notes:

e host element
Host name(s) or IP address(es) for local peer(s). Multiple IP addresses or hostnames can
be specified, separated by comma.

e auth-port element
Port used for RADIUS authentication messages.

e acct-port element
Port used for RADIUS accounting messages.

& PurelLoad

extreme performance testing

Provisioning
Provisioning of User |dentities is done by specifying path(s) to additional XML file(s). Multiple path
elements may be used. If a path is relative it is supposed to be located in the same directory as

where the main server configuration is located.
In addition provisioning of InitialFilterCriteria tied to public user identities, is done by specifiying

path to an additional file.

<!-- Provisioning -->

<provisioning>
<!-- Basic/default provisioning -->
<path>/hss-users.xml</path>
<!-- Additional provisioning -->
<path>/function-test-users.xml</path>
<!-- Sh IFC provisioning -->
<sh-ifc-path>/sh-ifc.xml</sh-ifc-path>

</provisioning>

For details on the XML format see the “Provisioning of User Identities” section.

Statistics
Basic statistics is produced and stored in the log/stats.log file. The interval when to write statistics

are specified in seconds using the statistics/interval element.

<!l-- Statistics configuration -->
<statistics>
<!-- Interval in seconds -->
<interval>e</interval>
</statistics>

HTTP
Configuration of various properties controlling the HTTP (web Service) server.

<!I-- HTTP server host/port -->

<http>
<!-- Hostname or IP address. Multiple comma separated hosts can be specified -->

<host>localhost</host>

<!-- Port -->

<port>8080</port>
</http>

e http/host element
Host name(s) or IP address(es) for HTTP server. Multiple IP addresses or hostnames can

be specified, separated by comma.
e http/port element
Port for the HTTP server.

& Pureload’

extreme performance testing

Logging

Logging is controlled by the file config/log4j.properties. To change logging from the default level
(INFO) to detailed logging (DEBUG) for stdout, change the following lines:

log4j.rootLogger = INFO, CONSOLE, FILE
log4j.appender.CONSOLE.Threshold=INFO

Change INFO to DEBUG and a lot of details will be logged to stdout.

Starting the Simulator

The HSS Simulator is started using the start script in the bin directory which takes the
configuration path and library path as optional arguments:

%> ./hss-simulator.sh [<config path> [<1lib path>]]

The configuration path is by default the config/ directory and library path the lib/ directory where
the simulator is installed.

& Pureload’

extreme performance testing

Provisioning

Provisioning of User Identities
Data tied to user identities is provisioned using one or more XML files containing private / public
identity user data.

The main structure of the data should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<users>
<private-identity>
<!I-- Private identity elements -->
</private-identity>
<public-identity>
<!-- Private identity elements -->
</public-identity>
</users>

Multiple private-identity and public-identity elements may be specified. The defined identities are
used by the Diameter interfaces as follows:

e Private Identities
Used by Zh and SWx

e Public Identities
Used by Sh and Zx

Both private-identity and public-identity elements have a mandatory attribute type that can be:

e default
Default settings. All identities will use these settings, if not overridden.
e range

Used to specify settings for a range of user identities. Ranges are specified using regular
expressions.

e user
Used to specify settings for an individual single user identity.

Incoming requests are first matched against single user definitions and if no match, the range
definitions will be tried in the order they are defined in the XML file.

& PurelLoad

extreme performance testing

Private Identities
A typical definition of a Private Identity (where type is default) could look like:

<private-identity type="default">
<identity>default</identity>
<!-- Authentication settings -->
<!I-- secret key as string, required length 16 -->
<auth-key>1234567890123456</auth-key>
<!-- Amf id as hex bytes, required length 2 bytes, e.g. OA5F -->
<auth-amf>0000</auth-amf>
<!-- Operator secret as hex bytes, required length 16 bytes -->
<auth-op>00000000000000000000000000000000< /auth-op>
<I-- Sequence number as hex bytes, required length 6 bytes -->
<auth-sqn>000000000000</auth-sqn>
<!-- GUSS settings -->
<guss-lifeTime>3600</guss-lifeTime>
<guss-uiccType>GBA</guss-uiccType>

</private-identity>

This can then be overridden to define a single user identity:

<private-identity type="user">
<identity>alice@ims.test</identity>
<auth-key>1234567890123456</auth-key>
<guss-ussList>
<uss id="0" type="0">
<uids>
<uid>sip:alice@ims.test</uid>
<uid>sip:alice2@ims.test</uid>
</uids>
</uss>
</guss-ussList>
</private-identity>

Here we define a private identity “alice@ims.test”. All settings in the “default” specification will be
used for this user, with the exception of “auth-key” and the “guss-ussList”.

& Pureload’

extreme performance testing
An example where we specify a range of private identities:

<private-identity type="range">
<identity>user(\d\d\d)@ims.test</identity>
<guss-ussList>
<uss id="0" type="0">
<uids>
<uid>sip:user%s@ims.test</uid>
<uid>sip:user%s@alt.ims.test</uid>
</uids>
</uss>
<extension><![CDATA[<mbmsserviceidlist><mbmsserviceid>
<keydomainid>domain%$1s</keydomainid><mskid>mskid%$1s</mskid>
</mbmsserviceid></mbmsserviceidlist>]]>
</extension>
</guss-ussList>
</private-identity>

I.e Private Identities “user000@ims.test” to “user999@ims.test” is defined.

SWx Support
To support SWx additional elements can be specified:

<private-identity type="default">
<identity>default</identity>

<allowed-networks>pureload.com</allowed-networks>
<allowed-access-types>WLAN,VIRTUAL</allowed-access-types>
<Non-3GPP-User-Data>
<Subscription-Id>
<Subscription-Id-Type>END_USER_E164</Subscription-Id-Type>
<Subscription-Id-Data>016646997167</Subscription-Id-Data>
</Subscription-Id>
<Non-3GPP-IP-Access>NON_3GPP_SUBSCRIPTION_ALLOWED</Non-3GPP-IP-Access>
<Non-3GPP-IP-Access-APN>Non_3GPP_APNS_DISABLE</Non-3GPP-IP-Access-APN>
</Non-3GPP-User-Data>
</private-identity>

The support SWx related elements are:
e allowed-networks
Comma separated list of networks allowed
e allowed-access-types
Comma separated list of allowed access types (RAT-Type)
e Non-3GPP-User-Data
Non-3GPP-User-Data AVP, specified in XML format

®
P HSS Simulator 3.0
% Pureload re HSS Simulator 5.0

extreme performance testing

© PurelLoad Software 2017 12 (25)

& PurelLoad

extreme performance testing

Public Identities
A typical definition of a Public Identity (where type is default) could look like:

<public-identity type="default">

<identity>default</identity>

<!-- Digest Password (used by Zx) -->

<digest-password>123456</digest-password>

<!-- SSO setting (used by Zx)-->

<!-- The following values can be used: enabled, unavailable or blocked -->

<sso>unavailable</sso>

<!-- Optional flag indicating if Framed-IP-Address should be matched (Zx) -->

<!-- Set to true or false. Default is false. -->

<match-framed-ip>false</match-framed-ip>

<!-- Optional Repository-Data -->

<repository-data><![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<Sh-Data xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://schemas.ericsson.com/HSS/app_service_data">

<RepositoryData><ServiceIndication>NAFMEDIA</ServiceIndication>
<SequenceNumber>101</SequenceNumber><ServiceData><mbmsserviceidlist>
<mbmsserviceid><keydomainid>domainl</keydomainid><mskid>mskid1l</mskid></mbmsserviceid>
<mbmsserviceid><keydomainid>domain2</keydomainid><mskid>mskid2</mskid></mbmsserviceid>
</mbmsserviceidlist></ServiceData></RepositoryData>
</Sh-Data>]]>

</repository-data>

</public-identity>

& PurelLoad

extreme performance testing
This can then be overridden to define a single user identity:

<public-identity type="user">
<identity>sip:alice@ims.test</identity>
<msisdn>+4563457900</msisdn>
<ipv4-address>192.168.1.100</ipv4-address>
<sso>enabled</sso>

</public-identity>

Similar to Private Identities we can specify a range of Public Identities:

<public-identity type="range">
<identity>sip:user\d\d\d@ims.test</identity>
</public-identity>

I.e Public Identities “sip:user000@ims.test” to “sip:user999@ims.test” are defined.

& Pureload’

extreme performance testing

More about Range definitions

Ranges of user identities are specified using regular expressions. Any regular expression can be
used and as long as the incoming request matches the regular expression, the identity will be
accepted and dynamically constructed in-memory for the duration of the request.

Each private identity requires a relationship to one or more public identities. For ranges of private
identities, this has been solved by allowing references to capturing groups in the regular
expression. The references are then used when specifying the related public identities using the
marker ‘%s’. The first ‘%s’ refers to the first capturing group, the second to the second group and
so on. It is also possible to explicitly say which group to use with the syntax ‘%$1s’ for the first
group, ‘%$2s’ for the second group (and so on).

References to capturing groups can be used in the following fields:
e uid (in private-identity)
e (GUSS-extension CDATA (in private-identity)
e Repository-Data CDATA (in public-identity)

The regular expression user(\d\d\d)@ims.test contains one capturing group with three digits. A
public identity can then be defined as sip:user%s@ims.test where the ‘%s’ will be replaced by the
matched three digits. E.g. an incoming request for private identity user017@ims.test would
resolve the public identity reference to sip:user017@ims.test.

& PurelLoad

extreme performance testing

Provisioning of Sh InitialFilterCriteria

XML data to be returned by Sh UDR requests (Sh Pull) with Data-Reference AVP set to
InitialFilterCriteria. The information is organized per group of public user identities specified using
regular expression.

The main structure of the data should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Sh IFCs (InitialFilterCriteria's) configuration -->
<sh-ifcs>

<!-- IFCs for public identities “sip:user000@ims.test” to “sip:user999@ims.test” -->

<ifc identity="sip:user\d\d\d@ims.test">

<! [CDATA
11>

</ifc>

</sh-ifcs>

Multiple ifc element may be specified and will be matched against actual public identity. If a match
the CDATA (XML data) information is returned in the UDA answer message.
A more complete example with actual IFCs XML elements:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Sh IFCs (InitialFilterCriteria's) configuration -->
<sh-ifcs>
<!I-- IFCs for public identities “sip:user000@ims.test” to “sip:user999@ims.test” -->
<ifc identity="sip:user\d\d\d@ims.test">
<! [CDATA[
<IFCs>
<InitialFilterCriteria>
<Priority>@</Priority>
<TriggerPoint>
<ConditionTypeCNF>0</ConditionTypeCNF>
<SPT>
<ConditionNegated>1</ConditionNegated>
<Group>0</Group>
<SIPHeader>
<Header>XDMS</Header>
<Content>VPN</Content>
</SIPHeader>
</SPT>
</TriggerPoint>
<ApplicationServer>
<ServerName>sip:AS1@homedomain.com</ServerName>
</ApplicationServer>
</InitialFilterCriteria>

& Pureload’

extreme performance testing

</IFCs>
11>

</ifc>
</sh-ifcs>

Diameter Support

The Diameter Base Protocol Stack support all parts of IETF RFC 3588 that is required to support
the the Diameter Applications described below.

The Diameter Applications/Interfaces supported are Sh, Zh, Zx and SWx as described in
Reference [1,2,3,4]. All command codes and AVPs described are supported.

Note that even if all Applications are supported on Diameter protocol level, not all are supported
by the HSS Simulator.

Sh

The Sh module process Sh User-Data-Request UDR) commands and returns Sh
User-Data-Answer (UDA) commands.

Three types of Data-Reference AVP values are supported:

e Repository-Data
Public identity is looked up and User-Data AVP containing Repository-Data XML is
returned.

e IMSPublicldentity
Public identity is looked up and User-Data AVP is returned including the public identifier
defined (in XML format).

e |PAddressSecureBindinglnformation
Public identity is looked up and defined IP information is returned using the
Framed-IP-Address, Framed-IPv6-Prefix or Framed-Interface-ld AVPs

e InitialFilterCriteria
InitialFilterCriteria (IFCs) XML are looked up per received Server-Name AVP (see
previous “Provisioning of Sh InitialFilterCriteria” section). The IFCs are returned using
User-Data AVP.

Zh

The Zh module process Zh Multimedia-Authentication-Request (MAR) commands and returns Zh
Multimedia-Authentication-Answer (MAA) commands.

& Pureload’

extreme performance testing

Zh is used for providing services in the 3GPP Generic Bootstrapping Architecture (GBA) and
performs the retrieval of an authentication vector and GBA User Security Settings (GUSS).

A private identity is looked up based on the user name in the incoming MAR. Depending on
requested authentication scheme, an authentication vector is then generated (AKA or SIP
Digest).

The GUSS contains references to public identities. An example GUSS XML.:

<?xml version="1.0" encoding="UTF-8"?>
<guss id="user@17@ims.test">
<bsfInfo>
<uiccType>GBA_U</uiccType>
<lifeTime>3600</lifeTime>
</bsfInfo>
<usslList>
<uss id="2" type="2" nafGroup="0">
<uids>
<uid>sip:user@17@ims.test</uid>
</uids>
<flags></flags>
</uss>
</ussList>
</guss>

Zx

The Zx module process Zx Multimedia-Authentication-Request (MAR) commands and returns Zx
Multimedia-Authentication-Answer (MAA) commands.

A public identity is looked up based on the incoming MAR. If the flag ‘match-framed-ip’ is set for
the public identity, the framed IP address is matched against the MAR.

Depending on requested authentication scheme (SSO or Digest), an authenticate message is
then returned in the answer.

& Pureload’

extreme performance testing

SWx

The SWx module process incoming MAR and SAR commands for a AAA server as described in
Reference [4]. In addition HSS initiated RTR and PPR commands can be triggered using the
REST API.

To identify a subscriber the User-Name AVP received in Diameter messages are used and
consist of a user IMSI. Corresponding private user identities are assumed to be defined as:
imsi@destination-realm.

The following describes an overview of the procedures supported (not all details are described).
Authentication Procedure

When a MAR command is received the following is done:

. check that the user exists

. check that the subscriber has Non-3GPP-User-Data defined

. check Visited-Network-ldentifier (if present)

. check the access type

. check if there is an existing 3GPP AAA Server already assigned the subscriber
. check the request type and possibly authenticate

OO Ok WON -

If any step fails an error is returned.
AAA Server identity is defined using the Origin-Host AVP.

Registration/DeRegistration Notification
When a SAR command is received the following is done:

1. check that the user exists
2. check if there is an existing 3GPP AAA Server already
3. check Server-Assignment-Type AVP
a. REGISTRATION - check/set subscriber status
b. DEREGISTRATION - clear assigned 3GPP AAA Server
c. AAA_USER DATA REQUEST - return Non-3GPP-User-Data
d. PGW_UPDATE - update APN id, Content id, etc.
e. RESTORATION - update the registration data

If any step fails an error is returned.
AAA Server identity is defined using the Origin-Host AVP.

& Pureload’

extreme performance testing

Network Initiated DeRegistration by HSS

Sending RTR messages is triggered using the REST API or done as a result from processing a
MAR command (when a new AAA server is assigned).

The provided REST API call will include information required to generate all AVPs in generated
RTA (Destination-Host and Deregistration-Reason).

If Deregistration-Reason is PERMANENT_TERMINATION current AAA server for the subscriber
is cleared and user status is set to NOT_REGISTERED.

HSS Initiated Update of User Profile Procedure
Sending PPR messages is triggered using the REST API.

The provided API will include all information required to generate all required PPR AVPs
(Non-3GPP-User-Data and PPR-Flags).

Diameter overload control

Diameter overload control as specified in Reference [5] is supported and is enabled is specified in
the server configuration.

If overload control is enabled, the HSS simulator will check the diameter TPS threshold and if
overload is detected OC-Supported-Features and OC-OLR AVPs are added to Diameter answer
messages.

To have a certain inertia when TPS is calculated actual TPS is calculated using an average of
transactions for the last 30 seconds.

& Pureload’

extreme performance testing

RADIUS Support

The RADIUS interface supports RADIUS authentication and accounting as as described in
Reference [6]. Limitations applies as follows.

Authentication

Only authentication types PAP and CHAP are supported.

When AccessRequests packets are received the RADIUS secret is verified. If not verified the
request is silently ignored. If verified, received authentication key and password are
authenticated. If authentication is successful an AccessAccept response packet is returned, else
AccessReject is returned.

Accounting

Received AccountingRequests is processed and simple AccountingResponse message is
returned.

In addition the MessageAuthenticator attribute is supported. If this AVP is included in received
packet it is used to verify the integrity of the AccessRequest.
If configured to be included in responses it is also added to response packets.

& Pureload’

extreme performance testing

Web Services (REST) Interface

The HTTP based API to HSS Simulator is designed as a RESTful web service.
All identities can be manipulated using HTTP GET, POST, PUT and DELETE methods.

Use GET to read identities, POST to create new ones, PUT to edit and DELETE to delete existing
ones.

Two different URL paths are used to specify the identity to be manipulated:

e /private-identity
e /public-identity

The path must be followed by the identity to be manipulated. To create or change an identity the
entity body of the HTTP request must include the XML data used to manipulate the identity. The
format is the same as used for provisioning of identities.

The following response status codes are used:
e 200 OK
The Request was successful
e 400 Bad Request
The request could not be completed
e 404 Not Found
Identity not found
e 500 Internal Server Error
Undefined server errors.

Read Identity
Example request reading a private identity:

GET /private-identity/user@ims.test
Accept: application/xml

Returned response body consists of XML representing identity.

& Pureload’

extreme performance testing

Create New ldentity
Example request creating a private identity:

POST /private-identity/user@ims.test

Content-Type: application/xml

<?xml version="1.0"?>

<private-identity type="user">
<identity>user@ims.test</identity>

</private-identity>

Update Identity
Example request updating a public identity:

PUT /public-identity/user@ims.test

Content-Type: application/xml

<?xml version="1.0"?>

<public-identity type="user">
<identity>sip:alice@ims.test</identity>
<ipv4-address>192.168.1.100</ipv4-address>
<sso>enabled</sso>

</public-identity>

The existing public identity will be completely replaced with the new one.

Delete Identity
Example deleting an private identity:

DELETE /private-identity/user@ims.test

& Pureload’

extreme performance testing

SWx Procedures
By using a query parameter with a HTTP PUT method SWx procedures can be triggered. Two
query parameters are supported:

e /private-identity?swx-rtr

To trigger sending SWx RTR Diameter message to an AAA server
e /private-identity?swx-ppr

To trigger sending SWx PPR Diameter message to an AAA server

Response body is set to the received Diameter message AVP’s, in XML format.
AVPs of the Diameter messages to be sent is specified in XML format as follows:

SWx RTR

Example request that will trigger the simulator to send a RTR message:

PUT /private-identity/001010999999001@pureload.com?swx-rtr
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<RTR>
<Deregistration-Reason>
<Reason-Code>PERMANENT_TERMINATION</Reason-Code>
</Deregistration-Reason>
<Destination-Host>192.168.0.100</Destination-Host>
</RTR>

The Deregistration-Reason must be specified. If Destination-Host is unspecified, the RTR
message is sent to the currently associated AAA server for the user.

SWx PPR

Example request that will trigger the simulator to send a PPR message:

PUT /private-identity/001010999999001@pureload.com?swx-ppr
Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8"?>
<PPR>
<PPR-Flags>0</PPR-Flags>
<Destination-Host>192.168.0.100</Destination-Host>
</PPR>

If Destination-Host is unspecified, the PPR message is sent to the currently associated AAA
server for the user.

& Pureload’

extreme performance testing

PureLoad Diameter Tasks

PureLoad Diameter Tasks, supporting Zh, Sh and Zx is provided as a separate task extension
package. This package can be used for testing and verification of the HSS Simulator, and when
simulation of Diameter client is needed.

References

[1]
[2]
[3]
[4]

[5]
[6]

Zh Interface Description in HSS - 7/155 19-CRA 119 0246/11 Uen A
Sh Interface Description in HSS - 2/15519-CRA 119 0246/11 Uen A
Zx Interface Description in HSS - 3/155 19-CRA 119 0248/11 Uen A
Diameter SWx application as described in

3GPP TS 29.273 "3GPP EPS AAA interfaces" release 13.

Diameter Overload Indication Conveyance, RFC 7683

RADIUS as described in RFC 2865, RFC 2866 and RFC 2869

